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Abstract—The problem of searching for observation objects appearing in accordance with the
Poisson flow mathematical model is considered. This problem is solved in the case of a finite
number of processing lines in the independent channels of a multichannel search system. Under
a high-intensity flow of objects, this may cause queues in object processing. A set of queuing
systems with independent incoming flows is selected as a model to determine a search law.
The systems of Kolmogorov differential equations describe the dynamics of the probabilistic
characteristics of their states under a finite number of processing lines in the search channels.
Two formulations of the optimization problem are considered, namely, with probabilistic and
time performance criteria. An iterative procedure is proposed to control the distribution of
search intensities in the channels of the search system. Examples are given.
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1. INTRODUCTION

The problems of rational effort distribution in search systems (SSs) [1–13] are an important class
of problems in the general theory of observation control and management [14–17]. Their effective
solution decreases the probability of undetected observation objects (OOs) in the SS coverage area,
reduces the time of their search, improves the reliability of OO detection, etc. In particular, such
problems include the search for and detection of space debris, since the corresponding flow of
particles can be treated as a Poisson flow [18], car traffic monitoring on multilane highways, air
traffic management near large airports, airspace use monitoring in megacities, etc.

The rules of solving the above class of problems can be applied to control other systems and
queuing networks, including the management of water resources, power grids, data transmission
processes in telecommunication systems, etc. [19–26].

The most general structural assumption regarding the mathematical model describing OOs in
the search process is their arbitrary (in particular, unlimited) number and appearance in the field
of view in accordance with a spatiotemporal random flow [27–30], usually Poisson.

In the latter case, the search problem was investigated in [6–10]. The common feature of the
above works is the absence of constraints on the number of processing lines in the SS channels.
Under certain conditions, this feature significantly simplified the mathematical models underlying
the design of the distribution laws of search intensities. However, for real SSs with a finite number
of processing lines in the channels, such distribution law design approaches cannot be used. This
is due to the peculiarities of the mathematical models (the Kolmogorov equations) describing the
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dynamics of the probabilistic characteristics of the SS channel states in terms of a queuing problem
with a finite number of processing lines in each channel [31–34].

In this regard, it is topical to control, via an appropriate law, the distribution of search intensities
for multichannel parallel SSs with independent channels and a finite number of processing lines in
each channel.

2. STRUCTURAL ANALYSIS OF THE MATHEMATICAL SEARCH MODEL

Let observation objects appear in the SS field of view X in accordance with a spatiotemporal
Poisson flow ϕ [19–22]. Here, X ⊂ Rn (1 � n � 3), and (x1, . . . , xn) denotes the Cartesian frame
in X.

Suppose that the field of view X is divided into I zones Xi, i = 1, I, each served by the corre-
sponding ith SS channel.

By assumption, X =
⋃
i
Xi, Xi

⋂
Xj = ∅, i = 1, I, j = 1, I, i �= j. Then any two flows defined

from ϕ as

ϕi(t) = ϕ(Xi, t), ϕj(t) = ϕ(Xj , t), i = 1, I, j = 1, I, i �= j, (2.1)

are Poisson and independent [27, 30].

According to [8, 9, 27, 34, 35], the intensity measures ξi(t), i = 1, I, often called the rates of
the temporal Poisson flows ϕi(t), respectively, are known continuous and bounded deterministic
functions. They characterize the temporal Poisson flows ϕi(t), i = 1, I, as flows with variable
parameters [27–29].

For each zone Xi, the probability of the appearance of one successive OO on a time interval
[t, t+Δt] is given by [32, 33]

ξi(t)Δt+ o(Δt), (2.2)

whereas the probability of the appearance of more than one OO constitutes o(Δt). Here, o(Δt) is
the residual of an infinitesimal order higher than Δt.

Let us introduce the following constraint: for the ith SS channel, i = 1, I, the number of pro-
cessing lines is finite and equal to ai.

We define the search time interval as Ω = [0, t ]. Be assumption, during this interval the ith SS
channel provides a search intensity λi(t) � 0.

Then, if there are k OOs in the zone Xi, during the time [t, t+Δt] at least one of them will be
found with the probability [8–10, 32, 33]

kλi(t)Δt+ o(Δt), k � ai,

aiλi(t)Δt+ o(Δt), k > ai.
(2.3)

In other words, for k > ai, the probability of detecting an OO on [t, t+Δt] stops growing with
increasing k.

The search intensities λi(t) in the zones Xi, i = 1, I, are supposed to be unknown, nonnegative,
continuous time-varying functions bounded on [0, t̄]. They are to be determined by solving an
optimization problem.

The search system problem in the zone Xi can be interpreted as servicing this zone with an
incoming OO flow that forms a Poisson-type load with the intensity measure ξi(t). As a rule,
this class of problems is described using the mathematical apparatus of reproduction and death
processes [31–33]. The dynamics of such processes are characterized using infinite-dimensional
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systems of Kolmogorov linear ordinary differential equations for the probabilities of process states.
These systems form a set of Cauchy problems [32, 33, 36]

Ṗi0 = −ξi(t)Pi0 + λi(t)Pi1,

Ṗik = −(ξi(t) + kλi(t))Pik + ξi(t)Pik−1 + (k + 1)λi(t)Pik+1, (k = 1, . . . , ai − 1),

Ṗik = −(ξi(t) + aiλi(t))Pik + ξi(t)Pik−1 + aiλi(t)Pik+1, k � ai,

Pi0(0) = 1, Pik(0) = 0, i = 1, I, t ∈ [0, t̄],

(2.4)

where Pi0 is the probability of absence of undetected OOs in Xi or the probability of an event
associated with the non-engagement of all processing lines of the ith SS channel for t ∈ Ω; Pik is
the probability of presence of undetected OOs in Xi k or the probability of an event associated
with the engagement of k processing lines of the ith SS channel if 1 � k < ai, or ai processing lines
if k � ai; the functions {λi(t), ξi(t), i = 1, I} on the interval Ω are supposed to be non-negative,
continuous, and bounded.

The Cauchy problem (2.4) reflects the physical meaning of the search carried out by independent
channels of the SS with a finite number of processing lines, sequentially in time as the OOs appear
in the zones Xi, i = 1, I.

When determining a control law for the distribution of search intensities in the SS, it is difficult
to use the mathematical models (2.4) due to their infinite dimension. In addition, the structures
of these models eliminate the possibility of their convolution, e.g., in terms of the expected (mean)
number of undetected OOs in each SS channel, as was done in [10].

By the service elements (servers) of the ith channel we will understand its processing lines. Then
there is no queue in search information processing in the ith channel if:

— None of its servers is busy or none of the processing lines is engaged in processing, which
corresponds to k = 0.

— k servers (k = 1, . . . , ai) are busy or k processing lines are engaged in processing.

The above states of the ith channel can be represented by the set

Si =
{
si0, si1, . . . , sik

∣∣
k=ai

}
, i = 1, I, (2.5)

where each subset sik (k = 0, 2, . . . , ai) includes C
k
ai =

ai!
k!(ai−k)! elements.

3. PROBLEM STATEMENT

Let pi, i = 1, I, denote the probability of an event associated with a single exit of the ith SS
channel from the set (2.5) given 0 � k � ai busy servers at the initial time instant. Note that
“single exit” means that the channel leaves Si exactly once.

Such events are joint and independent, and the probability of their sum is given by the rela-
tion [37]

pΣ(t) = p1(t) + p2(t)(1− p1(t)) + . . .+ pI(t)
I−1∏
i=1

(1− pi(t)). (3.1)

We define the first performance criterion for the search system as

Υ1 = pΣ(t̄) + η

t̄∫
0

λ(t)Tλ(t)dt → min
λ∈Λ

, (3.2)
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where λ(t) = [λ1(t) . . . λI(t)]
T is the vector of search intensities; η ∈ R1, η > 0 is a weight coefficient;

Λ is a set of admissible control laws (distribution laws of search intensities).

The set of admissible control laws consists of nonnegative and continuous time-varying functions
bounded on [0, t̄].

The criterion (3.2) is probabilistic. It assumes minimizing the sum of two components. The first
component is the probability with which the state of at least one SS channel will exit the set (2.5)
at the terminal time instant t̄ of observations. The second component is an analog of the search
energy cost of the SS.

Consider the second performance criterion. To do this, we introduce the mean dwell times of
the SS channels in the states excluding any queues in search information processing: mi = M[τi],
i = 1, I, where τi is a random variable specifying the dwell time of the ith SS channel in the state
set (2.5). We define the second performance criterion as

Υ2 = I t̄−
I∑

i=1

mi + η

t̄∫
0

λ(t)Tλ(t)dt → min
λ∈Λ

. (3.3)

The criterion (3.3) is a time criterion. It assumes minimizing the sum of two components at the
terminal time instant of observations. The first component is the sum of the mean dwell times of
the SS channels in the state sets (2.5), taken with a minus sign. The second component, as in (3.2),
is an analog of the search energy cost of the SS.

The problem is to design control laws for the distributions of search intensities λi(t), i = 1, I,
t ∈ Ω, in (2.4) between the channels of the multichannel SS with a finite number of processing lines
in each channel that serve the non-intersecting zones Xi, i = 1, I, of the SS field of view X via the
probabilistic (3.2) and time (3.3) performance criteria.

4. THE DISTRIBUTIONS OF SEARCH INTENSITIES IN THE MULTICHANNEL SS
WITH A FINITE NUMBER OF PROCESSING LINES:

CONTROL DESIGN VIA THE PROBABILISTIC CRITERION

Consider the control design procedure for the search for observation objects from the spatiotem-
poral Poisson flow ϕ in the multichannel search system with independent channels and a finite
number of processing lines in each channel in terms the probabilistic performance criterion (3.2).
To do this, we establish the following result.

Proposition 1. The probability of an event associated with a single exit of the ith SS channel
(i = 1, I) from the state set Si (2.5) provided the belonging of its state to this set at t = 0 is given by

pi(t) = P̄i ai+1(t), (4.1)

where the probability P̄i ai+1(t) is obtained by solving the system of differential equations

˙̄Pi0(t) = −ξi(t)P̄i0(t) + λi(t)P̄i1(t),

˙̄Pik(t) = −(ξi(t) + kλi(t))P̄ik(t) + ξi(t)P̄ik−1(t) + (k + 1)λi(t)P̄ik+1(t), (k = 1, . . . , ai − 1),

˙̄Piai(t) = −(ξi(t) + aiλi(t))P̄iai(t) + ξi(t)P̄iai−1(t),

˙̄Piai+1(t) = ξi(t)P̄ai(t), i = 1, I,

(4.2)

with the initial conditions
ai∑
k=0

P̄ik(0) = 1, P̄i ai+1(0) = 0. (4.3)

The proof is postponed to the Appendix.
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Note that equations (4.2) form a set of fictitious dynamic systems [15] with vector control
λ = [λ1 λ2 . . . λI ]

T. The initial conditions (4.3) determine the belonging of the states of the ith
channel to the set Si at t = 0 and correspond to the absence of a queue at its inputs.

Thus, for (3.1) we have

pΣ(t̄) = P̄1 a1+1(t̄) + P̄2 a2+1(t̄)(1− P̄1 a1+1(t̄)) + . . .+ P̄I aI+1(t̄)
I−1∏
i=1

(1− P̄i ai+1(t̄)). (4.4)

In view of (3.2) and (4.2), we define the Hamiltonian

H =
I∑

i=1

ψT
i AiPi + ηλTλ, (4.5)

where ψi = ψi(t) ∈ Rai+2 is the vector of conjugate variables; Pi(t) =
[
P̄i0(t) P̄i1(t) . . . P̄i ai+1(t)

]T
;

Ai ∈ R(ai+2)×(ai+2), Ai = ξiBi1 + λiBi2; the structure of the matrices Bi1 and Bi2 follows from (4.2)
and is presented in the Appendix.

A peculiarity of the matrices Bi1 and Bi2 is the zero sum of each column.

From (4.5) we obtain the systems of equations for ψi(t), i = 1, I :

ψ̇i = − ∂

∂Pi
H = −

(
ξiB

T
i1 + λiB

T
i2

)
ψi, t ∈ Ω. (4.6)

Due to (4.4), the boundary value conditions for (4.6) can be written as

ψi(t̄) =
∂

∂Pi(t̄)
pΣ(t̄) =

⎡⎣0 0 . . .
I∏

j=1,j �=i

(1− P̄jaj (t̄))

⎤⎦T

, i = 1, I. (4.7)

The minimum condition of (4.5) in λ yields

∂

∂λi
H = ψT

i Bi2Pi + 2ηλi = 0, i = 1, I. (4.8)

Considering (4.8), we define the optimal control

λi =
−ψT

i Bi2Pi

2η
, i = 1, I. (4.9)

To solve the two-point boundary value problem (4.2), (4.6), (4.7), we will apply the Krylov–Cher-
nous’ko method of successive approximations [14, 15, 39]. Assume that P̄i0(0) = 1 to specify (4.3).

Let a search control law, i.e., a search intensity vector λq, be formed at the qth step of the
iterative procedure.

The method of successive approximations involves the following operations.

1. Equations (4.2) are solved on the time interval Ω forward, and the vector of variables Pq
i ,

i = 1, I, corresponding to the distribution of search intensities λq
i , i = 1, I, is determined.

2. Based on these solutions, the terminal conditions for the conjugate variables ψq
i (t̄), i = 1, I,

are formed according to (4.7).

3. The system of equations (4.6) is solved on the time interval Ω backward with the terminal
conditions (4.7), and the vector of conjugate variables ψq

i (t), t ∈ Ω, i = 1, I, corresponding to the
control laws λq

i , i = 1, I, and the vector of variables Pq
i , i = 1, I, is determined.
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4. Based on the vectors Pq
i (t) and ψq

i (t), i = 1, I, the intermediate control vector corresponding
to the (q + 1)th step of the iterative procedure is calculated according to (4.9):

λ̃q+1
i =

−(ψq
i )

TBi2P
q
i

2η
, i = 1, I, t ∈ Ω. (4.10)

5. By the principle of partial control update [5, 8, 28], the search intensity control laws for the
(q + 1)th iteration are calculated using the distribution of search intensities λq

i , i = 1, I, obtained
at the previous step:

λq+1
i (t) = εqλ̃q+1

i (t) + (1− εq)λq
i (t), i = 1, I, t ∈ Ω, (4.11)

where εq ∈ (0, 1).

The parameter εq denotes the degree of updating of the search control laws λq
i (t), i = 1, I,

t ∈ Ω. It is determined by minimizing the objective function of the performance criterion (3.2) at
the corresponding step of the iterative procedure.

Next, the control law λq+1
i (t) is used as the initial one for the (q + 2)th step, and operations 1–5

of the iterative procedure are repeated.

Note that for the initial step of the iterative procedure (q = 0), the initial distribution of search
intensities λ0

i , i = 1, I, is selected from the set Λ of admissible control laws.

The optimal control (i.e., the optimal distribution law of search intensities) is given by

λiOS(t) = lim
q→∞λq

i (t), i = 1, I, t ∈ Ω. (4.12)

At each step of the iterative procedure, the partial control variation (4.11) obtained by solving
the optimization problem is intended to reduce the values of the objective functional. The values
εq ∈ (0, 1) in (4.11) are chosen from the condition of its maximum decrease. On the other hand,
according to (3.2), the objective functional corresponding to this criterion is bounded from below.
(At least, the functional under consideration cannot be negative.) Thus, the limit (4.12) exists.

In practice, one often performs q � Q (finitely many) iterations, where Q is the step number
after which the variations of the objective functional of the performance criterion (3.2) become
insignificant. By assumption, λiOS(t) � λQ

i (t), i = 1, I.

5. THE DISTRIBUTIONS OF SEARCH INTENSITIES IN THE MULTICHANNEL SS
WITH A FINITE NUMBER OF PROCESSING LINES:
CONTROL DESIGN VIA THE TIME CRITERION

Let the upper limit t̄ of the observation interval Ω be chosen so that the densities wi(t), i = 1, I,
of the dwell times τi of the SS channels in the corresponding sets (2.5) satisfy the conditions

t̄∫
0

wi(t)dt = 1, ∀i, i = 1, I. (5.1)

In other words, these densities are finite on Ω.

In view of (5.1), we transform the performance criterion (3.3) as follows.

Assertion 1. Under condition (5.1), the mean dwell time τi of the ith SS channel in the state
set Si (2.5) with the initial conditions (4.3) (a single stay) is given by

mi =

t̄∫
0

(1− P̄iai+1(t))dt. (5.2)

The proof of this result is provided in the Appendix.
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Considering (5.2), we transform the performance criterion (3.3) to

Υ2 =

t̄∫
0

[
ηλ(t)Tλ(t) +

I∑
i=1

P̄iai+1(t)

]
dt → min

λ∈Λ
. (5.3)

The mathematical models (4.2) and (5.3) are associated with the Hamiltonian

H =
I∑

i=1

(
ψT
i AiPi + P̄iai+1(t)

)
+ ηλTλ. (5.4)

The equations for the conjugate variables have the form

ψ̇i = − ∂

∂Pi
H = −(ξiB

T
i1 + λiB

T
i2)ψi − Ui, i = 1, I, t ∈ Ω, (5.5)

where the matrices Bi1 and Bi2, as in the first case, are determined according to (A.2); Ui ∈ Rai+2,
Ui = [0 0 . . . 0 1]T.

Due to (5.3), the boundary value conditions for (5.5) take the form ψi(t̄) = 0, i = 1, I; by (5.4),
the structure of the resulting control laws coincides with (4.9).

Like for the probabilistic criterion, the two-point boundary value problem (4.2), (5.5) is solved
using the Krylov–Chernous’ko successive approximation procedure. It is applied similarly to the
previous section.

Owing to the structure of mathematical models in the case under consideration, the computa-
tional optimization procedure can be decomposed channel-wise.

If the length of the observation interval is inconsistent with the structure of at least one of
the densities wi(t), i = 1, I (i.e., equality (5.1) holds only approximately), the solution becomes
suboptimal.

6. THE DISTRIBUTIONS OF SEARCH INTENSITIES IN THE MULTICHANNEL SS
WITH A FINITE NUMBER OF PROCESSING LINES:

CONTROL DESIGN EXAMPLES

Example 1. Consider a two-channel SS (I = 2) with three and four processing lines in the first
and second channels, respectively. The fictitious dynamic systems corresponding to the SS are
described by a mathematical model consisting of two systems of equations (4.2) with a1 = 3 and
a2 = 4, respectively. In this case, the performance criterion (3.2) takes the form

Υ1 = P̄14(t̄) + P̄25(t̄)− P̄14(t̄)P̄25(t̄) + η

t̄∫
0

(
λ2
1(t) + λ2

2(t)
)
dt → min

λ1,λ2∈Λ
. (6.1)

The direct systems of equations (4.2) for i = 1, 2 were solved with the initial conditions corre-
sponding to (4.3),

P̄10(0) = P̄20(0) = 1,

P̄11(0) = P̄12(0) = P̄13(0) = P̄14(0) = 0,

P̄21(0) = P̄22(0) = P̄23(0) = P̄24(0) = P̄25(0) = 0

on the search time interval Ω = [0, 5]. From this point onwards, the parameters are presented in
dimensionless units.
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Fig. 1.

Fig. 2.

The conjugate systems (4.6) are completely determined by the structures of the matrices (A.2)
with

B11, B12 ∈ R5×5 and B21, B22 ∈ R6×6. (6.2)

They were solved in reverse time (backward) with the terminal conditions corresponding to (4.7):

ψ1(t̄) =
[
0 0 0 0

[
1− P̄25(t̄)

]]T
,

ψ2(t̄) =
[
0 0 0 0 0

[
1− P̄14(t̄)

]]T
.

(6.3)

The appearance intensities of OOs in the zones X1 and X2 of the SS search area were supposed
to be linear functions of time: ξ1(t) = 2 + 0.4t and ξ2(t) = 3− 0.1t (lines 1 and 2 in Fig. 1).

The initial distributions of search intensities λ0
1 and λ0

2 were set uniform over the observation
interval (lines 1 and 2 in Fig. 2). The equations were solved on the search time interval with a step
of Δ = 10−3.
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Fig. 3.

Figure 3 shows the probability pΣ(t̄) of exiting the state sets

S1 = {s10, s11, . . . , s13}, S2 = {s20, s21, . . . , s24} (6.4)

by at least one of the two SS channels depending on the iteration number q in the Krylov–Cher-
nous’ko successive approximation procedure.

The variations in the probability component of the objective functional of the performance
criterion (6.1) become insignificant already for q � Q = 7. The structure of the optimal control
laws for the distribution of search intensities is presented in Fig. 2: curves 3 and 4 for the first and
second channels, respectively.

Note that these dependencies are consistent with the variation in the appearance intensities of
OOs from the flow (Fig. 1) in the corresponding SS channels.

The relative gain from optimization via the probabilistic criterion makes up δ = pΣ0(t̄)−pΣOS(t̄)
pΣ0(t̄)

�
0.42, where pΣ0(t̄) is the probability of exiting the state sets (6.4) by at least one of the two SS
channels under λ0

1, λ
0
2; pΣOS(t̄) is the same probability under λQ

i (t) � λiOS(t), i = 1, 2.

Example 2. For the two-channel search system of Example 1, consider the control design problem
for the distributions of search intensities via the time performance criterion (3.3) in the form (5.3).
In this case, the criterion becomes

Υ2 =

t̄∫
0

[
η(λ2

1(t) + λ2
2(t)) + P̄14(t) + P̄25(t)

]
dt → min

λ1,λ2∈Λ
. (6.5)

The direct systems of equations remain unchanged and have the form (4.2). The systems
of equations for the conjugate variables correspond to (5.5) with the matrices (6.2), the vectors
U1 ∈ R5 and U2 ∈ R6, and the zero terminal conditions ψi(t̄) = 0, i = 1, 2.

The appearance intensities of OOs in the zones X1 and X2 were supposed to be linear functions
of time: ξ1(t) = 9 + 0.5t and ξ2(t) = 12− 0.1t (lines 1 and 2, respectively, in Fig. 4).

The initial distributions of search intensities λ0
1 and λ0

2 were set uniform over the observation
interval (lines 1 and 2 in Fig. 5).
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Fig. 4.

Fig. 5.

Figure 6 shows the mean dwell times m1 (curve 1) and m2 (curve 2) of the SS channels
are in the state sets (6.4) and their sum (curve 3) depending on the iteration number q in the
Krylov–Chernous’ko successive approximation procedure. The time characteristics had insignifi-
cant changes for q � Q = 9.

The smaller growth of m1 compared to m2 is due to the smaller number of states in the set S1

compared to the set S2.

The optimal control laws for the distribution of search intensities are demonstrated in Fig. 5:
curves 3 and 4 for the first and second SS channels, respectively. The lower search intensity in the
first channel is due to the lower appearance intensity of OOs in it (Fig. 4).
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Fig. 6.

Fig. 7.

Figure 7 presents the structure of the densities of the dwell times of the SS channels in the
state sets (6.4): for t = 0, curves 1 and 3 for the first and second channels, respectively; for t = 5,
curves 2 and 4 similarly.

In this example, the optimization procedure increased the total mean dwell time of the SS
channels in the state sets (6.4), excluding any queues in search information processing, by more
than 2 times.

Considering the structure of the above mathematical models, it is easy to establish the following
fact: under the hypotheses of Proposition 1, the search intensities obtained by solving the opti-
mization problems for both performance criteria ((3.2) and and (3.3)) always belong to the class
of nonnegative, continuous, and bounded functions.
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7. CONCLUSIONS

The above control design approach to the search for OOs from a spatiotemporal Poisson flow
in a multichannel SS is oriented toward several practically important cases with a finite number of
processing lines in each SS channel. In such cases, it is impossible to apply methods associated with
the convolution of an infinite system of Kolmogorov equations, e.g., in terms of the mean number
of undetected OOs, particularly considered in [10].

The approach is based on the transition from infinite-dimensional systems of differential equa-
tions describing the probabilistic characteristics of SS channel states to finite-dimensional auxiliary
systems. Their dimensions are determined by the number of processing lines in each channel.

The parameters of the auxiliary systems of equations are the probabilistic characteristics of dwell
of the processing lines of SS channels in the state sets excluding any queues for search information
processing. With these parameters, it is possible to design control laws for the distribution of search
intensities from two viewpoints: minimizing the probability of exiting the above state sets by at
least one SS channel or maximizing the mean dwell time of the channels in these sets.

The solution of the first optimization problem with the probabilistic performance criterion (3.2)
is more complex due to the structure of the terminal component of this criterion. Characterized
by the total dimension of all auxiliary systems of equations (4.2), the dimension of this component
is given by

∑I
i=1 ai + 2I.

In the second case, the general control design procedure for search intensities can be decomposed
channel-wise.

Due to a rather high level of complexity, it is advisable to solve the arising optimization problems
using the Krylov–Chernous’ko method of successive approximations together with the principle of
partial control update. The examples have shown the possibility of their effective solution using
the above approach, particularly the gain from optimization.

Note that the approach can be generalized to the case when the search intensities of OOs in
different SS channels are not independent and satisfy the constraint

∑I
i=1 λi(t) = λΣ = const.

APPENDIX

Proof of Proposition 1

We associated with the system of equations (2.4) the state graph [38] presented in Fig. 8.

The graph reflects the sequence of variations in the states of the ith channel with a finite number
of processing lines. We select on this graph the states corresponding to the set

Si =
{
si0, si1, . . . , sik

∣∣
k=ai

}
→

{
s̄i0, s̄i1, b . . . , s̄ik

∣∣
k=ai

}
= S̄i. (A.1)

For (A.1), we construct the auxiliary state graph (Fig. 9) as a fragment of the original graph
(Fig. 8) with only one absorbing state s̄iai+1 added.

Fig. 8.

Fig. 9.
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It can be shown [38] that the time variation of the probabilistic characteristics P̄i0(t),

P̄i1(t), . . . , P̄iai
(t), P̄iai+1(t) of the states

{
s̄i0, s̄i1, . . . , s̄ik

∣∣
k=ai

, s̄iai+1

}
corresponding to the graph

in Fig. 9 is described by the system of differential equations (4.2). For the initial conditions (4.3),
the probability of an event associated with a single exit from the set S̄i (and, accordingly, from
the set Si) is determined by the probability of passing from the state s̄ik|k=ai

to s̄i ai+1. In other
words, it corresponds to the component of the solution of system (4.2) determined by the proba-
bility P̄i ai+1(t).

The proof of Proposition 1 is complete.

The structure of the matrices Bi1, Bi2 ∈ R(ai+2)×(ai+2)

Bi1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 . . . 0 0
1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
0 0 1 −1 . . . 0 0
. . . . . . .
0 0 0 0 . . . −1 0
0 0 0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bi2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0 0
0 −1 2 0 . . . 0 0
0 0 −2 3 . . . 0 0
. . . . . . .
0 0 0 0 . . . ai 0
0 0 0 0 . . . −ai 0
0 0 0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.2)

Proof of Proposition 2

We write the last equation of the auxiliary system of equations (4.2) corresponding
to the ith channel:

˙̄Piai+1(t) = ξi(t)P̄iai(t), P̄iai+1(0) = 0. (A.3)

Recall that the parameter P̄iai+1(t) means the probability of an event associated with a single
exit of the ith SS channel from the state set Si (2.5). Therefore, its derivative (A.3) determines the
density wi(t) of the random dwell time τi of this channel in the state set Si. In other words [38],

wi(t) = ξi(t)P̄iai(t). (A.4)

Now we multiply the left- and right-hand sides of (A.3) by t and integrate over the observation
interval Ω. As a result, in view of (A.4), we obtain

t̄∫
0

t ˙̄Piai+1(t)dt =

t̄∫
0

tξi(t)P̄iai(t)dt =

t̄∫
0

twi(t)dt. (A.5)

From (A.5) it follows that

t̄∫
0

t ˙̄Piai+1(t)dt = mi, (A.6)

where mi =
∫ t̄
0 twi(t)dt is the mean of the random dwell time τi.

Integrating by parts the left-hand side of (A.6) yields

tP̄iai+1(t)
∣∣∣t̄
0
−

t̄∫
0

P̄iai+1(t)dt = mi. (A.7)
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Considering condition (5.1), we finally arrive at

t̄∫
0

(1− P̄iai+1(t))dt = mi. (A.8)

The proof of Proposition 2 is complete.
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